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StttfW flt©/5 .
ABSTRACT

Previous work on parameter plane, three dimensional pa-

rameter space, and singular lines in the parameter plane are

reviewed.

A general concept of n-dimensional parameter space is

hypothesized whereby the parameter plane becomes a special

case of the general hypothesis. By the same argument the

singular line is shown to be a special case of the singular

hyperplane

.

Existence criteria for singular lines are established,

and compensation methods for creating singular lines in non-

singular systems are derived and used.
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CHAPTER I

INTRODUCTION

The analysis of linear control systems by use of the

Laplace Transforms of the systems 1 characteristic differential

equations is adequately accomplished by root locus or fre-

quency response methods when all coefficients of the complex

variable s are real constants.

These same methods are also sufficient to effect anal-

ysis when the coefficients are functions of a single real var-

iable K. The general characteristic equation

n
f(s) =

I a, s
k

= (1-1)
k=0

K

may be expressed as

n ,

f(s) =
I [b (K)+c ]s

K
= , (1-2)

k=0

from which follows

I b
k
(K)s

k

— = -1
,

(1-3)

I
c
k
s

k=0

which is then in the proper form for either root locus or fre-

quency response analysis.

However, many modern control systems, although still lin-

early conceived or approximated, cannot be handled by the

above somewhat "classical" techniques. The complexities

accompanying the advancing "state of the art" in control system
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and compensation design often result in characteristic equation

coefficients that are functions of two or more variables.

In 1959, Mitrovic introduced a method [1] for determining

the roots of the characteristic equation when the coefficients

of the two lowest ordered terms vary independently.

A point in the s-plane,

s = -a + joo (1-4)

may be specified in polar form as

s = -Coo + joj A-? 2
. (1-5)

n J n '

where co is the radial distance from the origin to the point

and c is the cosine of 0, the angle between the real axis and

00 .

n

Since

and

£oj = cos6 (1-6)
n

co /l-c z = sine, (1-7)

equation 1-5 may be expressed as

and

s = a) (cose + jsine) ; (1-8)
n J

s
k

= oo

k
(coske+jsinke) . (1-9)

n

As previously defined, for left-hand plane roots

therefore

= cos"
1

(-c:) ;
(1-10)

coske = cosk[cos (-£)], (1-11)

which can be expressed as a Chebyshev function of the first

kind, T, (-£) , and

sinke = sink [cos (-?)], (1-12)

12



-Re <
-a

Fig. 1.1 A Point in the s-Plane
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which can be expressed by a Chebyshev function of the second

kind, sin0U, (-£) . This permits equation 1-9 to be written

s
k

= oj^[T
k
(-c)+jsineU

k (-c) ] (1-13)

s
k

= co
k
[(-l)

k
T
k
(c)+jsin6(-l)

k+1
U
k (C)] (1-14)

and equation 1-1 to be written

f(s) = I a, u)

k
(-l)

k
T, (O+jsinG I a. co

k
(-1)

k+1
U, ( ?) = 0.

k=0 k=0 K n K

(1-15)

Since, for any non-zero value of 0, both the real and imag-

inary parts of equation 1-15 must independently equal zero,

two simultaneous equations for a, are formed:

n . ,

I
a,/(-l) K

T,(c) = (1-16)
k=0 K n K

I a,aj
k
(-l)

k+1
U, (?) = . (1-17)

k=0
K n K

The following relationship exists between the two kinds of

Chebyshev functions

:

T
k U)

= ^V C) " Uk-l U) ' d-18)

also

J (-l)
k+1

a. co
k
U, (c) = - I (-l)

k
a, 03

k
U, (^) ; (1-19)

,
L k knk s in k n k

k=0 k=0

therefore for any non-zero value of C, the simultaneous equa-

tions reduce to

X '-''VnVl'^ = ° ' (1 "20)
k=0

k k.
I

(-1) a.u£u. (C) = . (1-21)
k=0

k n k

14



U, (£) can be obtained for all values of k from the recur-

sion formula

Uk+l U)
= 2?U

k U) " U
k-l U) ' d-22)

where, for all values of C,

U_
X
(U = -1 (1-23)

U (C) = (1-24)

U
1
(C) = 1 . (1-25)

Equation 1-1 can be rewritten as

f(s) = a s + a ,s + ... a s + A, s + A rt
= , (1-26)

n n-1 2 1 '

and equations 1-20 and 1-21 become

-A
Q

+ I (-l)
k
a
k
^U

k _l( c) = (1-27)
k=2

n . .

-oj.A. + I (-1) a,u)*U. (c) = . (1-28)
n 1 i o k n k

k=2

Thus, A
Q

and A, become the coordinate axes of the

Mitrovic Plane; and lines of constant £ and u , along with

constant real root lines from the direct substitution of (-a)

for s in equation 1-26, can be plotted, giving the solution

of the characteristic equation for any point (A , A,).

This method was later extended by Elliott, Thaler, and

Heseltine [2,3] for specific coefficient pairs, and then gen-

eralized by Siljak [2,4] for any pair of variable coefficients

in the Coefficient Plane method, where equation 1-1, when

written as

i
n v

f(s) = A^ 1
+ A s

m
+ I a,s

K
= 0, (1-29)

1 m ,
L _ kk=0

k^l,m

15



results in the set of simultaneous equations in (A, , A )^ I'm

<-i>Vnni-i<s> + |
-1)VX-iw + X |

-1|kaA-i« = °

k=0
k^l,m (1-30)

1 n 1 m n m >
L * k n k "'

k=0
k^l,m (1-31)

Although this is an improvement of Mitrovic's original

method, it is still limited by the requirement that only two

coefficients of the characteristic equation contain variable

elements. However, in 1964 Siljak [5] extended this process

into the Parameter Plane, where two variable parameters can

appear in any of the coefficients of the characteristic equa-

tion. In the linear case,

a
k

= b
k
a + c

k 3 + f
k'

(1-32)

where a and 3 are the adjustable parameters. Hence, equation

1-1 becomes

n . n . n .

f(s) = a I b. s
K

+ 6 I c, s
K

+ I f,s = 0; (1-33)
k=0 K k=0

K
k=0

K

and equations 1-20 and 1-21 become

° Jo
K,V»UH I(I + B

J„
(
-1)k

°k
u
nUk-l ( 5'

+ I
(-l>

k
fk«>nUk _ 1 <?> = d-34)

n

I
k=0

a
J ( -l)

k
b
k
^U

k ( ^ + e JQ
^'VX^

k. k.
+ I (-D fu<U.(5) = . (1-35)

k=0
k n K

16



For notational ease,

n

1
=

I
(-l)

k
x
k
a)^U

k _ 1 (0 d-36)X
k=0

X
2 = X '-"Vn"^ 1 • l 1 " 37 '

k=0

and

B.oc + C
1
3 + F, = (1-38)

B
2
a + C

2
3 + F

2
= 0, (1-39)

which are solved by standard methods, giving constant £, ui ,

and a lines in the a-$ Parameter Plane for the solution of the

characteristic equation.

In 1968 Cadena [6] extended the parameter plane concept

to three independent parameters, where

a
k

= b
k
a + C

k 3 + d
kY

+ f
k*

(1-40)

The parametric simultaneous equations then become

B.a + C
i
e + D

x
y + F

1
= (1-41)

B
2
a + C

2
3 + D

2
y + F

2
= 0, (1-42)

which when solved give the line of intersection of two planes

in 3-parameter space. By an ingenious device of rotating the

y coordinate by 90° to form the (-3) ordinate in the a-3 plane,

Cadena, by graphical projections, reduces the constant £,, w ,

and a planes to families of lines in the 0-3 plane -- each

line representing a specific value of y. In the same work, it

is shown that for an n-parameter system, n-roots may be fixed

by the adjustment of each parameter to a specific value. In

this case the remaining roots are then determined by factoring

17



the quotient which results from the division of the character-

istic equation by the product of the specified roots.

What emerges from this "reduced characteristic equation"

concept is that a designer has at his disposal a "degree of

freedom" for each variable parameter in his system. If, for

example, the system contains three parameters, three roots

may be fixed by rigid adjustment of all three parameters; if

only two roots are specified (e.g., a complex conjugate pair),

the reduced characteristic equation then becomes a function of

one parameter (the remaining degree of freedom) , and ordinary

root locus methods determine the remaining roots; if only one

real root is specified, the reduced characteristic equation

is then a two parameter case, leading to root solution by

Parameter Plane methods.

Thus Parameter Plane techniques have become a powerful

tool for both the analysis and synthesis of modern complex

control systems.

18



CHAPTER II

THE SINGULAR LINE

In the preceding chapter it was shown that constant 5, u ,

and a lines could be mapped in the a-3 plane by the simulta-

neous solutions of equations 1-38 and 1-39. Using Cramer's

Rule, points M (C,oo ) can be mapped into a point M(ct,$) by

and

C
1
F
2 - C

2
F
1

B
1
C
2 " B

2
C
1

(2-1)

B
2
F
1 - B

1
F
2

B
1
C
2 " B

2
C
1

(2-2)

the point, M, being the intersection of constant c, lines and

constant oo lines. By this method the roots of characteristic
n *

equations can be determined from the output graphs of various

Parameter Plane computer programs, using linear interpolation,

if necessary, to find all roots at any point M(a,3).

An obvious limitation of this method is that the deter-

minant of the coefficient matrix be non-singular, or non-zero.

Although this limitation existed, it was dismissed as be-

ing of little significance until 1967, when Bowie [7], in

attempting to solve a sixth order characteristic equation,

19



found, that by selecting various points M(a,3), only certain

roots could be found using Parameter Plane methods. However,

by substituting the co-ordinates of the point M(a,3) into the

characteristic equation and factoring, the undetermined roots

were found to be complex conjugate pairs. Moreover, many

points M(a,$) were found to have the same complex pair in com-

mon; these common root pair points formed a straight line in

the a-|3 plane which was the locus of a constant ^-constant cor n

pair.

Upon further investigation of this phenomenon, Bowie dis-

covered that lines of constant values of L co , which he called
' n

'

singular lines, existed whenever equations 1-38 and 1-39 were

linearly dependent.

If the coefficient matrix of equations 1-38 and 1-39 is

expanded in terms of £ and co , an infinite number of singular

lines can be found by setting the determinant to zero and solv-

ing for either £ or oj in terms of the other. For an equation

of order n, there are a maximum of 2(n-l) values of co which

produce singular lines for each of the infinite number of val-

ues of C; conversely, (n-1) values of £ will produce singular-

ities for each value of co .

n

Bowie illustrated this principle with two examples, which

will be reproduced at this point:

Example I

Consider the characteristic equation

f(s) = 0.04s
4

+ 0.34s
3

+ (0.2a+1.12)s
2

+ (0 . 5a+$+l . 7)

s

+ 23 + 1 = 0. (2-3)

20



For ease of coefficient identification, display the terms as

- - 0.2 0.5 -

- - - 1 2

0.04 0.34 1.12 1.7 1

Then , if C = 0.5,

B, = 0.2oj
1 n

C
1

= -2

B~ = -0.5oo + 0.2co C~ = -co ;

2 n n 2 n

(2-4)

and

B,C - B C, = -0.2co
3

+ 0.4co
2

- go = .

1 z A l n n n
(2-5)

Reducing

,

to - 2co +5 = 0;
n n

(2-6)

and

oj = 1 ± j2 .

n J (2-7)

Since no real values of co exist, no singular line will exist

for this characteristic equation for the value £ = 0.5.

Example II

f(s) = s
6

+ 80s
5

+ (20a+1600)s
4

+ 840as
3

+ (1600a+400B)

s

2

+ 16003s + 16003 = 0. (2-8)

21



Displaying terms,

- - 20 840 1600 - -

- - - - 400 1600 1600

1 80 1600
- - - -

For C = 0.5,

B, = 1600oo
2

- 840oo
3

1 n n

B„ = 1600co
2

- 20oo
4

2 n n

C, = -1600 + 400oo
1 n

C = -I6OO00 + 400oj
2 n n

(2-9)

and

Solving,

oj
4 - 42oo

3
+ 164oo

2
- 320oj + 320 = 0.

n n n n

00 = 2.1115, 37.889, and a complex pair.

(2-10)

(2-11)

Therefore, for c = 0.5, there exist two values of oj
— 2.1115

' n

and 37.889, which will produce singular lines for equation 2-8

Once the conditions for singularity have been met, the

singular line may be represented by the equation

3 = -
B
l

F
l _

B
2

F
2

(2-12)
"1 ^1 "2 2

Cadena [6] investigated the singular line when the char-

acteristic equation coefficients are functions of three var-

iables .

Since the solution of equations 1-41 and 1-42 is a line

in three dimensional space for a C-00 pair, the definition

singular line may be loosely applied. Where that line inter-

sects the a-3-co-ordinate plane is the normal two dimensional

22



solution (or singular point) of equations 1-38 and 1-39, since

Y = 0. This actually reduces to his "degree of freedom" con-

cept, whereby two roots may be specified by specifying the

proper values of two of the variable parameters.

A special case of the three dimensional singular line is

when it happens to lie in one of the co-ordinate planes or in

a plane parallel to one of the co-ordinate planes. When this

occurs, the singular line of equation 2-12 exists for the

specific value of y

•

An illustrative example of the foregoing was given by

Cadena:

Example III

Given

f(s) = s
4

+ (10a+10)s 3
+ (40a+5B+10y+30)s

2
+ ( 80a+103+252) s

+ 70a + 103 + 25y + 340 = 0, (2-13)

it is desired that a pair of complex conjugate roots be lo-

cated at c = 0.5, a) =2. Division of equation 2-13 by the

2product of the desired roots, s + 2s + 4 , yields a reduced

characteristic equation in a , 3, y and a remainder which must

equal zero for the division to be exact.

(-20y+200)s + (-10a-103-15y+300) = (2-14)

or

R
1
S + R = ° ' (2-15)

Obviously, R, , and R
Q
must simultaneously be zero, so

y - 10 = (2-16)

and

10a + 103 + 15y - 300 = 0. (2-17)

23



This yields the singular line

a + 3 - 15 = (2-18)

in the plane y = 10.

Perhaps a more illuminating manner in which to view this

problem is to display the coefficients in tabular form as was

done for the two-dimensional examples. Thus

k 4 3 2 1

- 10 40 80 70

- - 5 10 10

- - 10 - 25

1 10 30 252 340

Then, for C = . 5 , oo =2,
i ^ n

B
l

= 10 C
l

= 10 D
l

= 15 F
l

= " 300

B
2

= C
2

= D
2

= 40 F
2

= -400

(2-19)

and

10a + 103 + 15y - 300 = (2-20)

40y - 400 = 0. (2-21)

This simultaneous system is the singular line formed by the

intersection of the two planes described by equations 2-20 and

2-21. The singular line is

a + 3 - 15 = (2-22)

in the plane

Y = 10. (2-23)

24



Now, if dL = 10,

D
2

= 20; (2-24)

and

10a + 106 + 15y - 300 = (2-25)

20y - 400 = 0. (2-26)

The singular line is then

a + 6 = (2-27)

in the plane

Y = 20. (2-28)

If now d, = d
3

= d, = 10

,

D =95 D
2

= 180; (2-29)

10a + 106 + 95y - 300 = (2-30)

180y - 400 = 0; (2-31)

and the singular line becomes

a + 6 - ^ = (2-32)

in the plane

Y = ^S- . (2-33)
9

'

By now it is apparent that any variation of coefficients d,

will result in different singular lines in different planes

parallel to the a-6 plane.

What then happens if coefficients b, and/or c, are varied?

Let c
3

= c
4

= 10. Then

C
1

= -70 C
2

= 160 (2-34)

and

10a - 706 + 15y - 300 = (2-35)

-1606 + 40y - 400 = 0. (2-36)

25



The singular line for £ = . 5 , co =2 now exists in a , 3; Y~

space at the intersection of the two planes described by equa-

tions 2-35 and 2-36. Of what use is this information? If

equation 2-36 is solved for y with the result then substituted

into equation 2-35, the singular line is then "mapped" into

the a-3 plane as

a - 3 - 15 = (2-37)

via the "transform"

y = 43 + 10. (2-38)

What does this mean? For any consistent three dimensional set

of equations 1-41 and 1-42, a two dimensional singular line

can be realized by placing an appropriate constraint upon the

third parameter.

For further examination, let c~ = 0. Then

C, = -10 C
2

= -20; (2-39)

10a - 103 + 15y - 300 = (2-40)

- 203 + 40y - 400 = 0; (2-41)

4a - 3 - 60 = (2-42)

Y = y3 + 10. (2-43)

and

if

Let b. = 10. Then

B
2

= 160; (2-44)

10a + 103 + 15y - 300 = (2-45)

160a + 40y - 400 = 0; (2-46)

and

50a - 103 + 150 = (2-47)

26



if

Y = -4a + 10. (2-48)

What has been demonstrated in the preceding examples is

the existence of a powerful tool for the synthesis of self-

adaptive systems or, for that matter, any system for which a

characteristic response is desired. How this tool is used

will be the subject of further discussion later in this thesis
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CHAPTER III

N-DIMENSIONAL PARAMETER SPACE

Consider a set of n consistent, independent simultaneous

equations where n = N:

B-a + C-,6 + D y + E, 6 + . . . + N..V + P., =

B
2
a + C

2
3 + D

2
y + E

2
6 + ... + N

2
v + P

2
=

(3-1)

Ba + C6 + Dv + E(S+...+Nv + P =0.
n n n' n n n

The solution of the system of equations 3-1 is the set of

values obtained for the variables a, 3, y, 6, ..., v, which

defines a point, which is a zero (n-n) dimensional entity, in

n-dimensional space.

If now only (n-1) independent equations in n = N var-

iables can be obtained, the set is reduced to

B, a + C, 3 + D, y + E,6 + . . . + N
;

,v + P =

B
2
a + C

2
6 + D

2
y + E

2
6 + ... + N

2
v + P

2
=

(3-2)

B ,a + C n 6 + D ,y + E -6 + ...+N
n
v + P n

= 0.
n-1 n-1 n-1' n-1 n-1 n-1

The solution to set 3-2 is a one [n-(n-l)] dimensional line

defined by an arbitrary pair of the N variables.

Similarly, for (n-2) independent equations, the solution

becomes a two [n-(n-2)J dimensional plane defined by an

arbitrary trio of the N variables.

28



By induction it is clear that if only two independent

equations describe a system of N variables, there results equa-

tions

B.,a + C,B + DjY + Ey6 + ... + NjV + P.= (3-3)

B
2
a + C

2
3 + D

2
y + E

2
6 + ... + N

2
v + P

2
= (3-4)

whose solution is an (n-2) dimensional hyperplane defined by

an arbitrary (n-1) set of the N variables.

If the coefficients B, C, D, E, . .., N, P are now func-

tions of some constant pair (C,co ), the solution to equations

3-3 and 3-4 is an (n-2) dimensional hyperplane of constant £

,

03 . If. when all but two arbitrary variables are set to zero
n 2

and equations 3-3 and 3-4 remain consistent and independent,

the point of intersection of the (a-2) dimensional constant c;

,

co hyperplane with the plane of the two remaining co-ordinates

is determined. If equations 3-3 and 3-4 become dependent, the

intersection is a line; if consistent, no intersection exists.

For non-linear combinations of the N variables, the (n-2)

dimensional hyperplane then becomes hyperbolic, parabolic,

cubic, quartic, etc., in nature, which, in the independent and

consistent case described in the preceding paraqraph, gives

rise to the possibility of multiple intersections with the two-

dimensional co-ordinate planes.

Although extremely little of practical engineering value

can be extracted from the preceding discussion, the concepts

expressed are valid and are useful for an appreciation of the

two parameter problem. Since mental imagery extends at best

to a relatively poor perception of three dimensions, the root
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finding problem is limited at the present state of the art to

the three dimensional case demonstrated by Cadena [6].

However, one limited use is the determination of necessary

values of two parameters, say a and 3/ given arbitrary values

of the remaining n parameters, for obtaining a desired £ , co

pair.

Given a system described by the characteristic equation

n .

f(s) =
I a. s = (3-5)

k=0 K

where

a
k

= b
k
a + C

k^
+ d

kY
+ e

k
5 + **• + pk' (3-6)

one arrives at equations 3-3 and 3-4, where all capital let-

ter coefficients are functions of the desired t. co pair. If
' n

"

variables y, 6, ..., v can be fixed or measured, the problem

then becomes two dimensional in a and 3 ;
leading to solution

by the methods outlined in chapter one. This is essentially

what Cadena achieves by graphical means by folding the y~co-

ordinate into the a-3 plane.

Figure 3.1 is illustrative of the three dimensional linear

case. For the system

B
x
a + C

x
3 + D

x
y + F

1
= (3-7)

B
2
a + C

2
3 + D

2
y + F

2
= 0, (3-8)

the constant l, , co [{n=3}-2] hyperplane is a line in three

dimensional space.

For the case of non-linear combinations of variables,

the C/ w lines become curves in space with the possibility
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of multiple intersections with constant y-planes as illustrated

in figure 3.2 for the system

B^ + C^ + D-y + H
1

= (3-9)

B
2
a + C

2
6 + D

2
y + E

2
a
2

+ F^ 2
+ G

2 y
2

+ H
2

= 0. (3-10)

For the condition when equations 3-3 and 3-4 are depend-

ent, the solution is an (n-1) dimensional hyperplane described

by either of the two "singular" equations. The same line of

reasoning applies as in the "non-singular" case, resulting in

the singular plane for the three parameter problem and the

singular line for the two parameter problem, which is illus-

trated in figure 3.3.

Although the singular line is the most useful of all the

"singular" hyperplanes because of the availability of graphical

means for determining the remaining roots of a characteristic

equation, singular theory can be readily applied to any multi-

variate self-adaptive system or any other system where a con-

stant complex root pair is desired. For any system with n

parameters, variation in any or all of (n-1) parameters may be

compensated by adjustment of the nth parameter.
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Fig. 3.2 Non-linear Intersection in Three Parameter Space
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Fig. 3.3 Singular Plane
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CHAPTER IV

INTRODUCTION TO COMPENSATION

Since the singular line can be an extremely useful system

characteristic, the ability to design compensation to produce

a singular line for a specific complex conjuqate root pair be-

comes very desirable. The simplest mathematical scheme which

comes to mind is that, for a system

B,a + C
1
3 + F

1
= (4-1)

B
2
a + C

2
B + F

2
= , (4-2)

a singular line is present if B, = B
? , C, = C

2 , and F, = F
2

.

Using the general coefficient X, if

X
x

= X
2 ,

(4-3)

then

and

X
l

" X
2

= 0/ (4 " 4)

n . .

I (-1) \v\.i(S}-Uk (C)] = 0, (4-5)
k=0

which, when expanded, becomes

2 2 3
- x

Q
+ co

n
x
1

+ (l-2c)co
n
x
2

+ (-1-2^+4? ) w
n
x
3

+ (-l+4c+4c
2
-8c

3
)o)

4
x
4

+ (l+4c-12c
2
-8<;

3
+16?

4 )^x
5

+ (l-6^-12c
2
+32c

3
+16?

4
-32c

5
)oo

6
x
6

* (-l-6 ?+24c
2
+ 32c

3
-80C

4
-32c

5
+ 64,

6 )^x
7

+ (-l+8c+24<;
2
-80c

3
-80c

4
+ 192C

5
+64c

6 -12 8c
7
)oo

8
x
8

+ (1+8c-40?
2
-80C

3
+240c

4
+192?

5 -44 8?
6 -12 8c

7
+2 56c

8
)oj

9
xqn y

+ (l-10c-4 0C
2+16 0<;

3
+240S

4 -6 72£
5 -44 8c

6
+ 1024c

7+2 56c
8

-512c
9
)oo

10
x in + ... = . (4-6)

n 10
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If the coefficients of X> for each term k are displayed

as in Table 4-1, the result, neglecting the k = row, which

is (-1) for m = 0, is a lower left diagonal matrix with each

coefficient repeating once in the same column. The repeating

coefficient pairs alternate in sign as each column is formed.

The values of the main diagonal-pair are (-2) , and the suc-

ceeding diagonal-pairs are formed by entering Table 4-2 with

arguments 1 and m to obtain the necessary multipliers of the

magnitude of the elements in the main diagonal-pair.

Table 4-2 is easily formed by first making elements l
n ,

m . and 1^ , m
n
equal to one ; then

1., m. = 1., m. n
+ 1. ,, m. . (4-7)

l j l j-1 l-l 3

Therefore, by establishing the preceding conditions for

all coefficients X of equations 4-1 and 4-2, compensation to

produce a singular line can be effected.

Because plant gain is usually the available control to

adjust, it is convenient to equate all terms x„ in the form

xn = co x, + (1-2O0J x„ + ... ,
(4-8)

n 1 n 2

since gain for a type-one unity-feedback plant with no zeros,

which can always be realized mathematically by block diagram

algebra, is the sum of all the x~ terms.

This compensation can be easily achieved with a cascaded

component whose transfer function numerator contains the term

b
n
a + c

n
3 + f

n
and whose denominator cancels the numerator of

the uncompensated plant.
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Coefficients of £
m

X o / 2 3 4 S 6 7 a 9
1 1 1

1 1 1

-J__l_ _l _!.__.\ 1 1 1

,i -i-aXi . ; _

-/ I 4 \l4. p8X

1 xU ir'^Xl- 8
jV 1 jV

x. 1 1 \
/ '-6 \l-/2 | tZ \

i •
i

1 1

I 1

1 I

1 i

--:H--i—!-.--

i l

1 |~ ~ "
l

"

I 1

1 ,. , 4
i 1

i

X i
'

i\ '

1

1

1

1

1

1

1

1

1

1

J

1

1

1

1

1

1

1

1

1

25-fcV

/

z

3

4

5

6

7

r

"

-/ l-fc 4*Xr32-

>v 1

-po\^-J2 64\i
r " X^~

~

64 j-/2it\.$

r

/ 18

/ J-/C \

24_ _ J-jX

-40 _ J_-
£o_ _

-40 J_/£0
v

v

Xv

9

X ' i\ '

,24£\k?*L _ jz4J£SJrJ z3-
1 N^^ 1

I \
240 l-£72\[-448 |/024\10

1 1 N.

2£l -5/X

/ 1=4 1-3 h 2 1- 1

1 = 6.
'-z)

m

Table 4-1

Table of Multipliers

IX 1 2 3 4 $ 6 7 8 9

/ i ; / I 1 1 t t

1 z 3 4 5- & 7 a 9 13

2 3 £ JO 15" Z\ 2S 36 AS 5*

3 4 /o 20 35 Se 84 /20 It* ZZc

4 5- /5" 35' TO IZIL 2/o 230 395" (c IS'

Table 4-2
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Example IV

Example I in chapter II presents a characteristic equation

0.04s
4

+ 0.34s
3

+ (0.2a+1.12)s
2

+ (0 . 5a+3+l . 7) s + 23 + 1 =

(4-9)

which has been shown to contain no singular lines. Suppose,

for example, it is desired to have a singular line for the

roots £ = 0.5, go = 1. If equation 4-9 represents the system

in figure 4.1a, addition of a cascade compensator with trans-

fer function

G ( S ) = ba+cS+f (4-10)
^c

{S>
23+1 {q '

results in a new characteristic equation

0.04s
4

+ 0.34s
3

+ (0.2a+1.12)

s

2
+ (0 . 5a+3+l . 7)

s

+ ba +c3 + f = 0, (4-H)

where, if the system is made singular by definition,

B
1

= -b + 0.2 = B
2

= -0.3 (4-12)

C
±

= -c = C
2

= -1 (4-13)

F, = -f + 0.78 = F
2

= -0.62; (4-14)

and the system then has a singular line solution for the roots

C = . 5 , oo =1 when b = 0.5, c = 1, and f = 1.4. The com-
' n ' '

pensated system is then as shown in figure 4.1b; and the sin-

gular line for the desired roots is

0.3a + 3 + 0.62 = 0. (4-15)

Although, as stated in chapter two, a system may possess

an infinite number of singular lines, one for a desired root

pair may still not exist without compensation.
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Fig. 4.1 Example IV-4th Order Plant
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Example V

Figure 4.2a shows a system which was contrived to have

singular lines. The characteristic equation is

s
3

+ as
2

+ (K
1
+8K

1
K
2
3)s + 20K

X
K
2
3 = 0, (4-16)

where

B, = oo
1 n

B = 2£u>
2 n

C, = -20K,K o C = -8K
n
K (ja

1 12 2 1 2 n

F, = -2^00
1 n

3 2 3
F~ = oo - 4c oo - K-.0J .

2 n n In

(4-17)

(4-18)

(4-19)

By the definition for a singular line,

B
i

c
i

B
2

C
2

-F C*1 ^1

-F C*2 U
2

B
l " F

l

B
2

-F
2

= (4-20)

Substituting

,

2
00

n
- 20K

1
K
2

2?w -8K
n
K„

n 12

= 40K,K o Cw
2

- 8K-.K„oo
2

= (4-21)
1 2. n 1 2 n

2£u)
n

" 20K
1
K
2

(4c
2

oo

3
-w

3
+K

n
oo ) -8K

n
K

n n 1 n 12
= 80K,K £

2
oo

3
- 20K n

K„oo12^ n
3

l"2~n

+ 20K
2
K„oj - 16K,K~Coj

3
n12n 1 2 n =

(4-22)

CO
n

2<;oo
n

2?oo
2

(4 6:

2
oo

3
-oo

3+K
n

oo )
' n n n 1 n

= 4c
2

oo

5
- oo

5
+ K

n
oo
3

- 4c
2

oo

3
= 0.s n n In n

Solving, equation 4-21 gives

C = 0.2,

(4-23)

(4-24)

and equations 4-22 and 4-23 give

oo — K, .

n 1
(4-25)
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Fig. 4.2 Example V-3rd Order Plant
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The singular line for roots t, - 0.2, oo = K- is described by

both

a - 20K
2
3 - 0.4/K^ = ° (4-26)

from the B, , C, , F, coefficients and by

0.4a - 8K
2
/K^3 - 0.16^ = (4-27)

from the B
2

/ C
2

, F
2

coefficients. Dividing equation 4-27 by

0.4,

a - 20K
2
/K7g - 0.4/kT = 0. (4-28)

Since equations 4-26 and 4-28 must be identical, it is ob-

vious that

/K~ = k. = go
2

= u> =1. (4-29)linn
This is fortunate if the roots t = . 2 . co =1 are de-

' n

sired, but suppose a singular line is wanted for the roots

5 = 0.5, oo =1.
' n

By block diagram algebra the system can be reduced to

that shown in figure 4.2b. Selecting a cascade compensator

which cancels the plant numerator

8K,K
9
gs+ba+cg+f

G
c
(s) = SKJ^s+i.S) (4 -30)

where the s numerator coefficient must contain $ in order

that C
?

be non-zero and where 8K,K
2

is inserted with the idea

of hopefully preserving a resemblance of the original gain, a

new characteristic equation

s
3

+ as
2

+ (K
1
+8K

1
K
2
6)s + ba + eg + f = (4-31)

is formed. For singularity
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B, = -b+1 = B
2

= 1; b = (4-32)

C
1

= -c = C
2

= -8K
1
K
2

; c = SK^ (4-33)

F
1

= -f-1 = F
2

= -K
1

; f = K
1
-l . (4-34)

If now K
1

= K
2

= 1, the compensator becomes the readily real-

izable

_s+l
c "~

s-
G ~ (s) = ^33 ' (4 " 35)

with the compensated system in figure 4.2c having the singular

line

a - 83 - 1 = 0. (4-36)

Figure 4.3 shows the parameter plane plot of the charac-

teristic equation

s
3

+ as
2

+ (80+l)s + 86 = (4-37)

with the singular line of equation 4-36 . The intersection of

the singular line with the real root lines then determines

the complete solution of equation 4-37 for selected singular

line values of a and 3. It is interesting to note that the

plots of the constant £ and constant go lines form saddles as

they approach the singular values. This is due to computer

truncation as the program solution approaches the indeterminate

condition

.

Example VI

For the plant shown in figure 4.4a with characteristic

equation

s
3

+ (a+2)s
2

+ 2as + KK- = 0, (4-38)

cascade compensation is desired to produce a singular line

for roots £ = . 5 , go =1. The first step is to cancel the
n r
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Scale: a=5/in. ,&=l/in.

Fig. 4.3 Example V-Charactenstic Equation

44



^ , K
K,

S(Stij(Sh<j

(a)

#2 /3[s + i+L(aK z -t)<x-K2-i]//3j

KK t
(s+Ki)

(b)

-»4

(C)

f >-

p~~
KK,(s*ft

»" Plant

Fig. 4.4 Example VI-3rd Order Plant
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plant numerator while concurrently introducing the second pa-

rameter in at least two different characteristic equation co-

efficients so that neither C, nor C~ are zero. This can be

accomplished in at least two ways

:

r f e \ - 3s+ba+cg+f .. , v

G
C
(S) - KKl (s+K

2
)

(4 " 39)

or

where the a3 term in the numerator is needed because of the

a3 term produced by the denominator. The first method pro-

duces the compensated characteristic equation

s
4

+ (a+K„+2)s
3

+ [ (K +2)a+2K ]s
2

+ (2K a+3)s + ba +cB + f = 0,

with

(4-41)

B
1

= -b + 1 + K
2

= B
2

= 2 - K
2

(4-42)

C
1

= -c = C
2

= -1 (4-43)

F
1

= -f + K
2

- 2 = F
2

= 2K
2

- 1 , (4-44)

resulting in the singular line

(2-K
2
)a + 3 + 1 - 2K

2
= 0. (4-45)

The compensator is then

3{s+l+[(2K
9
-l)a-K

9
-l]/$}

<V S
> =

KKl (s+K
2

)
•

(4 "46)

which is shown in figure 4.4b.

With the second method the characteristic equation becomes

s
4

+ (a+3+2)s
3

+ (2a+23+a3)s
2

+ (2a3+l)s + ba + eg

+ da3 + f = 0, (4-47)
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where

making

B
1

= -b+1 = B
2

= 2 (4-48)

C, = -c+1 = C
2

= 2 (4-49)

D
1

= -d+1 = D
2

= -1 (4-50)

F, = -f-2 = F
2

= -2, (4-51)

_ , v s-a-3+2a3 #, C o\G
c
(s) = KKl ( s+ e) '

(4 " 52)

which is shown in figure 4.4c. The singular line is

2a + 20 - a3 - 2 = 0, (4-53)

which may be written

3 = -£*• + 2 (4-54)
a-2

and is plotted in figure 4.5. Since

lim 3=2, (4-55)
a ->oo

3 could be set to 2 to give singular line performance for

small variations about a large value of a.

The preceding has demonstrated a rather simple mathemat-

ical approach to singular line compensation, but it is suffi-

cient both for a practical solution to the singular line

problem and for an appreciation of a more elegant method which

is the subject of the next chapter.
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CHAPTER V

COMPENSATING TECHNIQUES

Consider the uncompensated two parameter control system

described by

B^a + C.^ + F, = (5-1)

B
2
a + C

2
3 + F

2
= 0. (5-2)

If this system is now compensated by some function of s and

Y, where y is a function of a and $, equations 5-1 and 5-2 be-

come

B
x
a + C

1
3 + D

1
y(a / 3) + F, = (5-3)

B
2
a + C

2
B + D

2
y(a,B) + F

2
= (5-4)

for the compensated system. After equation 5-4 is multiplied

by D^/D
2 , the set becomes

B
x
a + C

1
3 + D

1
Y(a / 6) + F

±
= (5-5)

D B DC D F
-jj-^- a + -~^- 3 + DlY (a,3) + -i-=- = 0. (5-6)

Adding equations 5-5 and 5-6 gives

D B DC D F
(B

1
+ l5p + (c

i
+ "5^* + 2V (a ' 3) + F

l t -kf = °'

(5-7)

which, when solved for y(«»3)» yields

1
B
l

B
2

C
l

C
2

F
l

F
2

Y(o , B) = .
l
[( _i + _i)a+ (gi+^B +

5
i +

of]'*
5 - 8 '

the value of y f° r the compensator. Also,
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n / f» ,

"D
2
B 1-D 1

B
2

, #

-D
2
D
l"

D
l
C
2 %0 °2 F1

D
1
F
2

DlY (a,3) =
( 2D^ > a +

< 2D^
> 3 " 2DJ-

"
2DJ" '

(5-9)

which, when substituted into equations 5-5 and 5-6, gives

D
2
B D B D

2
C DC BjF,

< B
1 - 25^ - 2^> ° + (C

1
" 25^ " 3^ B + F

l
" ^

- 25^ " ° <
5"10 >

,

D
1
B
2

D
2
B
1

D
1
B
2, , ,

D
1
C
2

D
2
C
1

D
1
C
2, .

,

D
1
F
2

( D
2

" 2D
2

" 2D
2

a
D
2

" 2D
2

" 2D
2

' D
2

DP D F

Reducing, equations 5-10 and 5-11 become

(D
2
B
1
-D

1
B
2
)a + (D

2
C
1
-D

1
C
2
)3 + ^

2
F1 " °1F2

= ° (5_12 )

(D
1
B
2
-D

2
B
1

) a + (D
1
D
2
-D

2
C
1
)6 + D^ - D^ = 0, (5-13)

which, differing by a constant factor of (-1) , are obviously

singular and are indeed the equation of a singular line for

the compensated system.

Several examples utilizing equation 5-8 to design a com-

pensator to produce a singular line described by equations

5-12 and 5-13 will be given for a variety of systems.

Example VII

Type Q-3rd Order-Feedback Compensation-One Parameter in Plant

Denominator

For the system shown in figure 5.1a it is desired to obtain

feedback compensation to produce a singular line for the roots

C = . 5 , oj =1. The first step is obviously to introduce the
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Fig. 5.1 Example VII-Type 0, 3rd Order Plant
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second parameter. A slight amount of caution must be exercisec

to insure that the second parameter occurs in coefficients

other than those which will contain the compensating function

y(a,3) so that the 3 coefficient in the singular line equatio

5-12 will be non-zero. This is shown in figures 5.1b and 5.1c

which features the introduction of the compensating function.

The resultant characteristic equation is then

s
3

+ (a+3 + 8)s
2

+ (8a+43+Y+16)s + 15a + 4y + 4 = , (5-14)

with

(5-15)B, = -14 C
l = 1 D

l = - 4 F
l - 3

B
2

= - 7 C
2 = -3 D

2
= -1 F

2
= -8 (5-16)

Substitution into equations 5-12 and 5-8 gives the singular

line

14a + 133 + 35 = 0, (5-17)

produced when the system is feedback compensated by

Y(a,3) - - |ia - £1* - |i . (5-18)

The characteristic equation is then

s
3

+ (a+3+8)s
2

+ (Jia + |p3 + jp) s - 6a - ^3 - §^ = ,

(5-19)

2
which, when divided by s + s + 1, the product of the constant

roots, results in the reduced characteristic equation, or in

this case, the remaining root,

s+a+3+7=0. (5-20)

Obviously, for a stable system,

-a-3-7<0. (5-21)
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Since, from equation 5-17,

14 3S
3 =

" rf* " i! (5 " 22)

j-ja - || < , (5-23)

and

a <_ 56 (5-24)

for a stable system operated on the singular line.

If Routh's stability criterion is applied to equation

5-19, a stability area in the parameter plane is established

by the boundaries formed by curves

a + 6 + 8 = (5-25)

22a
2

+ 43a3 + 227a + 21£
2

+ 2233 + 708 = (5-26)

12a + 116 + 21 = 0. (5-27)

The singular line intersects the boundary of equation 5-27 at

a = 56

.

The parameter plane plot of equation 5-19 is shown in

figure 5.2, where the real root lines have a finite error in

slope because an unresolved "bug" in the computer program for

graphing real root lines.

Example VIII

Type 0-4th Order-Cascade Compensation-Two Parameters in Plant

Denominator

For the system in figure 5.3a, cascade compensation is

added as shown in figure 5.3b, resulting in the characteristic

equation
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Fig. 5.2 Example Vll-Characteriatic Equation
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Fig. 5.3 Example VIII-Type 0, 4th Order Plant
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s
5

+ (a+3+k
2
k
1
+3)s

4
+ [ (k

2
k
1
+3) (a+6) + ag + 3k

1
k
2
]s

3

+ [ (3k2
k
1
+2) (a+e) + (k

2
k
1
+3) gg]

s

2
+ [2k

2
k
1
(a+6) (5-28)

+ (3k k +2)a6+y]s + 2k
2
k aB + k.,Y = ,

giving, for roots y = . 5 , oo =1,

B
l

= C
l

= 2k
2
k
l~

1 D
l

= "k
2
k
l
+2 E

l
= ~k

l
F
l

= " 3k
2
k
2
+1

(5-29)
B
2

= C
2

= k
2
k,+l D = -2k

2
k
1
+l E

2
= -1 F o

= ~k
2
k
l"

2 *

(5-30)

For the case of the a3 product, equation 5-12 can be extended

to

(E
2
B,-E

1
B
2
)a + (E

2
C
1
-E

1
C
2
)e + (E^-j-E.^ ) a3 + E

2
F

i
" E

i
F2 = °'

(5-31)

which leads to the singular line

(l-2k
2
k
1
+k

2
k
2
+k

1
) (a+B) + (k

2
k
1
-2-2k

2
k
2
+k

1
) a3

+ 3k
2
k - 1 - k

2
k
2

- 2k
1

= 0. (5-32)

For a linear singular line,

k
2
k
l

" 2 " 2k
2
k
l

+ k
l

= °' (5-33)

which, when solved for k. , yields

k„+l
k
l " 4%" ± 4^ /k2" 14k 2

+ 1
•

(5 " 34)

Setting the radical equal to zero and solving for k-

13.93 < k
2

< 0.07 (5-35)

for real values of k, . Choosing k- = 13.93 in order to obtain

the greatest possible residue for the singular roots to in-

crease their dominance makes k, = 0.268. The singular line
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for the compensated system is then

a + 3 - 1.67 = 0. (5-36)

For the compensator, equation 5-8 can be extended to

1
B
l

B
2

C
l

C
2

D
l

D
2

F
l

F
?

Y(0rB , = - 1[(^ +
E
i)a+ (_1 + _1) 6 + (gl + gi)a6 + gi + ^],

(5-37)

which for k, = 0.268 and k
?

= 13.93 gives

_ , . [14.47(a+3)-6.49a3-21.9] (s+0.268) ,_ _ .

G
c
(s)

s+3.73 (5 " 38)

Although the pole- zero configuration of the above comoen-

sating filter is recognized as undesirable in that it spans

more than one decade, it was chosen only to keep the singular

line linear for illustrative purposes. A more physically

feasible filter will result in a non-linear singular curve.

The resultant characteristic equation then becomes

s
5

+ (a+3 +6.73)s
4

+ [ 6 . 73 (a+3) +a3+ll . 2 ]

s

3
+ [13 . 2 (a+3) +6 . 73a3 ]

s

2

+ [21.94(a+3)+6.71a3-21.9]s + 3.87(a+3) + 5.73a3 - 5.87 = 0.

(5-39)

The reduced characteristic equation is then

s
3

+ (a+3+5.73)s
2

+ [5 . 73 (a+3) +a3+4 . 47] s + 6.47(a+3)

+ 5.73a3 - 10.2 = 0. (5-40)

Since, from equation 5-36,

3 = -a + 1.67, (5-41)

equation 5-40 becomes

s
3

+ 7.4s
2

+ (-a
2+1.67a+14.13)s - 5.73a

2
+ 14.13a + 0.6 = 0,

(5-42)
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for which a Routh's stability analysis yields a range of ooera-

tion

-0.04 < a < 2.51. (5-43)

Figure 5.4 shows the parameter plane plot of the reduced

characteristic equation. For clarity figures 5.5 and 5.6 show

only the lines X,
= 0.8 and C = 0.9, respectively. From these

plots it is clear that the second pair of complex roots shift

continuously for extremely small changes in a and 3.

Figure 5.7 is the parameter plane plot of characteristic

equation 5-39.

Example IX

Type l-2nd Order-Feedback Compensation-No Parameters in Plant

For the uncompensated system of figure 5.8a, the two

parameters must be introduced as in figure 5.8b. Tachometer

feedback is used in order to retain the system type. Next

the singular line compensating function is introduced with

accelerometer feedback so that the singular line coefficients

will be non-zero. The characteristic equation is then

(lOy+Ds 2
+ (lOa+106+Ds + 10 = 0, (5-44)

with, for L, = . 5 , go =1,
' n

B = C, = D
1

= 10 F, = -9 (5-45)

B
2

= C
2

= -10 D
2

= 10 F
2

= . (5-46)

This produces a singular line

10a + 106 - 9 = 0, (5-47)

and

Y (a,3) = *r°i + 2-B +
2TT

. (5-48)
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Fig. 5.4 Example VIII-Reduced Characteristic Equation
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Scale:a=4/in. ,3=4/in.

Fig. 5.5 Example VHI-Zeta =0.8
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Fig. 5.6 Example VHI-Zeta = 0.9
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Scale :a*4/in. ,0-4/in.

Fig. 5.7 Ixample VIII-Cb*racteristic Equation

62



(a)

tf?\_ tfSS : P/ant
~

i

j

(<x+/?)5

(b)

-*- v^ t^p-
I+i. Trtcn F+*>Alaarl<

i

i iun i i* »• — •- -
— — — — -"•

rc-v^s
2

(c)

Fig. 5.8 Example IX-Type 1, 2nd Order Plant
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By substitution of the singular line relationship into equation

5-48,

Y - iJ • (5-49)

Example X

Type l-3rd Order-Cascade Compensation-One Parameter in Plant

Denominator

For the uncompensated system of figure 5.9a, the second

parameter is introduced via tachometer feedback both to pre-

serve the system type and to avoid a 3y product when the cas-

cade compensator is added. This is shown in figure 5.9b.

Then the compensator is introduced at the k = and k = 1

levels as in figure 5.9c, yielding the characteristic equation

s + (a+l+k
2
k
1
)s + [ (l+k

2
k

;

.) a+3+k
2
k ]s + [k

2
k
1
(a+$) +4y] s

+ 4k
x
y = 0. (5-50)

As usual, for ? = . 5 , co = 1,

B
l

= k
2
k
l

C
l

= 1 D
l

= " 4k
2

F
l

= _1 (5-51)

B
2

= 1 C
2

= -k
2
k
1
+l D

2
= -4 F

2
= k

2
k
1
-l. (5-52)

The singular line is then

(-4k
2
k
1
+4k

1
)a + (-4-4k

2
k^+4k

x
) 3 + 4 + 4k

2
k^ - Ak

±
= 0.(5-53)

If kp = 10 for a one decade filter pole-zero spread, equation

5-53 becomes

-36k
x
a + (-40k^+4k

1
-4) 3 + 40k^ - 4k^ +4=0. (5-54)

The compensating function is then

Y ( a ,3) = ^-[llk
1
a+(l+k

1
-10k^)3-l+10k^-k

1
] ,

(5-55)
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which gives a characteristic equation

s
4

+ (a+1+lOk^s 3
+ [ (l+10k

1
)a+$+10k

1
]s

2

+ [(10^ +
1J)

a + (5kl + jjL + 1)0 - jjL + 5kl - l]s

llk
l 1

k
l 2 1 2

k
l

+ -y^a + (j + J
1- ~ 5kp0 - j + 5k^ - ji = (5-56)

and a reduced characteristic equation

s
2

+ (a+lOk^s + 10k
1
a +3-1=0. (5-57)

If k, = 2, which gives good dominance characteristics to the

singular roots, equation 5-57 becomes

s
2

+ (a+20)s + 20a +3-1=0; (5-58)

and the singular line becomes

6a + 133 - 13 = 0. (5-59)

Substitution of equation 5-59 into equation 5-58 gives

s
2

+ (a+20)s +
2-^a = 0, (5-60)

which may be rewritten

, 254s
a ( s + —y^>
s(s+20)

1 (5 - 61)

for root locus analysis as in figure 5.10. Obviously the two

non-singular roots are real, and the system is stable for all

positive values of a.

The characteristic equation is

s
4

+ (a+21)s
3

+ (21a+3+20)s
2

+ (^-a + i|-B + ^j) s

+ 11a - ije + 2j = (5-62)
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for the system compensated by

(Ha - ZU + 11) (s+2)

V s
> " — 's+20

16
• < 5 " 63 >

Parameter plane plots of the reduced characteristic equation

and the characteristic equation are shown in figures 5.11 and

5.12.

Example XI

Type l-4th Order-Parameter in Numerator

When a parameter appears in the numerator of an uncom-

pensated system, the technique used in the previous examples

must be modified to avoid an ay or 3y product. In chapter

four it was shown that the plant numerator could be cancelled

by the compensator, but in many situations this may not be

desirable or even possible. However, there do exist systems,

especially electrical or electronic, whose transfer function

factors may be physically separable, so that the numerator

parameter may be removed as a gain or filter component as

shown in figures 5.13a and 5.13b. In this case the compensat-

ing function may then be introduced in the numerator of a oar-

allel filter having the same denominator, as shown in figure

5.13c, where the compensated characteristic equation is

s
4

+ (a+2)s
3

+ (2a+100)s
2

+ (lOOa+e+y) s + 2g + . ly =

(5-64)

if k = 0.1, a completely random value. Then for £ = 0.5,

to = 1

,

n

B
1

= 1 C
1

= -2 D
1

= -0.1 F
1

= 98 (5-65)

B
2

= -98 C
2

= -1 D
2

= -1 F
2

= 99. (5-66)
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Fig. 5.11 Example X-Reduced Characteristic Equation
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Fig. 5.12 Example X-Characteristic Equation
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The singular line is

10.8a - 1.93 + 88.1 = 0. (5-67)

The compensating function

y(a,3) = -44a - 10.53 + 539.5 (5-68)

results in a characteristic equation

s
4

+ (a+2)s
3

+ (2a+100)s
2

+ ( 56a-9 . 53+539 . 5) s - 4.4a

+ 0.953 + 53.95 = (5-69)

and a reduced characteristic equation

s
2

+ (a+l)s + a + 98 = (5-70)

which has left-half plane roots for a > -1 and real roots for

a > 20. 8.

A root locus plot for a > is shown in figure 5.14, and

a parameter plane plot of the characteristic equation is shown

in figure 5.15.

Example XII

Type 2-6th Order-Parameter in Plant Numerator

For the system of figure 5.16a again assume it is pos-

sible to separate the numerator parameter as in figure 5.16b.

Then a compensation scheme could be as depicted in figure

5.16c, where if k, =10, k
2

= 100, the characteristic equation

s
7

+ 40s
6

+ (a+600)s
5

+ (30a+4000)s
4

+ ( 300a+3+Y+10000)

s

3

+ (1000a+203+1010y)s
2

+ (1503+10050y)

s

+ 5003 + 50000y = (5-71)

gives, for €, = . 5 , co =1,

B
±

= 701 C
1

= -481 D
±

= -48991 F
±

= -9440 (5-72)

B
2

= 971 C
2

= -130 D
2

= -9040 F
2

= -3401. (5-73)
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Fig. 5.15 Example Xl-Characteristic Equation
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Fig. 5.16 Example XII-Type 2, 6th Order Plant
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The singular line is

23.2a - $ - 40.2 = 0. (5-74)

Y(a,B) = 0.06091a - 0.0120553 - 0.28465. (5-75)

The resultant characteristic equation is

s
7

+ 40s
6

+ (a+600)s
5

+ (30a+4000)s
4

+ ( 300 . 06a+0 . 98793

+10000)s
3

+ (1061. 5a+7. 82443-287. 5)s
2

+ (612.15a+28.8473-2861)s + 3045.5a - 102.83

- 14230 = 0; (5-76)

and the reduced characteristic equation is

s
5

+ 39s
4

+ (a+560)s
3

+ (29a+3401)s 2
+ (270 . 06a+0 . 98793

+6039)s + 761.44a + 6.83653 - 9728 = 0, (5-77)

which becomes, after application of the singular line relation-

ship ,

s
5

+ 39s
4

+ (a+560)s
3

+ (29a+3401)

s

2
+ (293 . 03a+5999 . 3)

s

+ 920.73a - 10000 = 0, (5-78)

for which a root locus plot is shown in figure 5.17. Parameter

plane plots of the reduced characteristic equation and the

characteristic equation are shown in figures 5.18 and 5.19.

Although the preceding examples are by no means the only

method for effecting singular line compensation, they illus-

trate the application of a mathematically rigorous technique

that is both physically feasible and laboriously expedient.
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Fig. 5.18 Exaapx9 x.i -Reduced Characteristic Equation
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Pig. 5.19 Example Xll-Characteristic Equation
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CHAPTER VI

RECOMMENDATIONS FOR FURTHER INVESTIGATION

This thesis in no manner exhausts the study of parameter

space and singularity. Although the compensation techniques

can be extended to many types of control systems, it would be

foolish and presumptuous to assume universal applicability.

Solid state operational amplifiers offer an attractive

means for synthesizing the compensators discussed in the ore-

vious chapters, but examination of the compensator transfer

functions reveal that truly self-adaptive systems cannot be

realized by these means until a voltage regulated linear

resistance device can be achieved.

Digital compensating devices should be investigated for

systems where expense is not an overriding factor.

The possibility exists that Cadena's method of folding

the third co-ordinate into the a-8 plane to obtain a grid of

y values may be repeated n-2 times for n parameter problems.

Finally, a computer program to analytically solve the

system

B a + C,B + DjY + E,6 + ... + N..V + P. = (6-1)

B
2
a + C

2
3 + D

2
y + E

2
6 + ... + N

2
v 4- P

2
= (6-2)

by iterative processes should be possible.
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APPENDIX I

Table of Values of U
fc

(0.5)

U (0.5)

-1 -1

1 1

2 1

3

4 -1

5 -1

6

7 1

8 1

9

10 -1
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